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The diffraction of water waves by a vertical circular cylinder is considered in the regime 
where the wave amplitude A and cylinder radius a are of the same order, and both are 
small compared to the wavelength. The wave slope is small, and a conventional linear 
analysis applies in the outer domain far from the cylinder. Significant nonlinear effects 
exist in the complementary inner domain close to the cylinder, associated with the free- 
surface boundary condition. Using inner coordinates scaled with respect to a, it is 
shown that the leading-order nonlinear contribution to the velocity potential includes 
terms proportional to both A% and A3. The wave load which acts on the cylinder near 
the free surface includes second- and third-harmonic components which are 
proportional respectively to A2a2 and A3a. In a conventional perturbation analysis, 
where A 4 a, these components would be ordered in magnitude corresponding to the 
different powers of A ,  but here they are of the same order. The second- and third-order 
components of the total force are of comparable magnitude for practical values of the 
wave slope. 

1. Introduction 
In recent years there has been a growing recognition that large offshore platforms 

can experience transient structural deflections at natural frequencies substantially 
higher than the dominant wave frequencies. This phenomenon, which has become 
known as ‘ringing’, cannot be explained by traditional theories of wave diffraction. 
The observations in model experiments and on instrumented platforms suggest that 
ringing occurs when the waves are steep, and when the wave height is comparable to 
the cross-sectional dimensions of the structure, but there is no evidence of wave 
breaking or of slamming impact. Nor is there evidence of significant viscous effects or 
flow separation (Grue, Bjerrshol& Strand 1994). Figure 1, reproduced from Jefferys & 
Rainey (1 994), illustrates a characteristic ringing event observed in scale-model 
experiments of a tension-leg platform, where the relevant structural resonance is due 
to elongation of the vertical mooring tendons. Similar problems can occur for fixed 
platforms in very deep water, particularly ‘monotowers’ which consist of a slender 
vertical column where the relevant response is in a bending mode. 

The usual theoretical approach to analyse wave interactions with an offshore 
structure is based on linearization of the diffraction problem in the frequency domain. 
Regular incident waves of small amplitude A ,  frequency w ,  and wavelength h = 2n/K 
are considered. The non-dimensional wave slope KA is assumed to be small, and the 
solutions for the velocity potential and pressure are carried out to first order in KA. The 
most important practical issues are concerned with the prediction of the force and 
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FIGURE 1. Experimental data showing the occurrence of ringing on a tension-leg platform with four 
columns. The upper curve shows the time history of the incident wave, which builds up to a large 
amplitude after a relatively calm interval of time. The lower curve shows a measured tension at the 
structural eigenfrequency, where a rapid buildup and slow decay of resonant 'ringing' is evident. 
Since the incident wave is measured at a point alongside the structure which is midway between the 
columns, there is a phase lead of the response relative to the first large wave crest. (This figure is 
replotted from the data presented by Jefferys & Rainey (1994, figure 5). The horizontal axis has been 
re-scaled in units of time. The normalizations of the vertical scales are not known to the authors.) 

moment acting on the structure, and of the local 'wave loads'. In the linearized theory 
these are harmonic in time, with the same frequency w as the incident waves. 

In applications where the structure is sensitive to excitation at high or low 
frequencies, outside the range of first-order forcing, it is necessary to consider the 
second-order wave forces proportional to (K@.  In regular waves these include a mean 
drift force, which is constant in time, and a second-harmonic force. The mean drift 
force, and part of the second-harmonic force, are due to quadratic contributions from 
the linear solution. These contributions are associated partly with the second-order 
pressure acting on the mean submerged surface of the structure, and also with the effect 
of the first-order pressure acting on the unsteady boundary at the free surface. The 
force due to the latter effect is effectively a 'point force' acting at the free surface. In 
addition to these contributions from the linear solution there is an additional 
component of the second-harmonic force due to the second-order solution for the 
velocity potential. The second-order solution is particularly complicated, since it is 
governed by an inhomogeneous free-surface boundary condition which corresponds 
physically to an imposed pressure acting on the free surface and extending to the far 
field in an oscillatory manner with relatively slow attenuation (cf. Chau & Eatock 
Taylor 1992). Malenica & Molin (1994) have initiated an extended approach intended 
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to evaluate the third-harmonic force on a circular cylinder, including the contribution 
from the third-order potential. 

The conventional perturbation analysis on which these diffraction theories are based 
assumes that the wave amplitude A is asymptotically small in relation to all other 
relevant length scales, including not only the wavelength h but also the characteristic 
lengths of the structure. (The fluid depth h introduces another length scale, but this is 
not relevant if h > h.) Generally it is assumed that the relevant characteristic length L 
is comparable to the wavelength, and thus that KL = O(1). This is referred to as the 
dirraction regime. The analysis is simplified in the long-wavelength regime, where the 
additional assumption is made that (KL < 1). This leads, for example, to the simple 
conclcsion that the horizontal wave force acting locally on a fixed body is proportional 
to the acceleration of the incident-wave velocity field at the same position, i.e. the 
inertia term in Morison's formula. 

Many offshore platforms, including those where ringing has been observed, are 
supported by vertical columns in the form of circular cylinders which intersect the free 
surface and maintain a constant radius a over a substantial depth. This radius is the 
most relevant length scale in the diffraction analysis, and it is used subsequently in 
place of the more general characteristic parameter L. For large platforms of 
contemporary design, a = 10 m is a typical radius. In severe sea states the orders of 
magnitude of the corresponding wave scales are A = 10 m, and h = 200-400 m. In 
this situation the wavelength is much larger than the cylinder radius, justifying the 
long-wavelength approximation. However, the wave amplitude is not small compared 
to the characteristic length scale of the body, and it is necessary to reconsider the 
perturbation analysis under the assumption that A / a  = O( 1). This is the essential 
feature of the present work. 

Considering the wave amplitude to be of the same order as the column radius 
suggests significant nonlinear effects in the near field close to the cylinder. Nevertheless 
a perturbation expansion is justified by the additional assumption that the incident 
wavelength is large compared to the amplitude. Formally, then, we assume that KA < 
1, Ka < 1 , and A / a  = O( l), and we develop a consistent perturbation expansion based 
on these assumptions. Regular waves of amplitude A and wavenumber K are incident 
upon a fixed circular cylinder of radius a. The cylinder axis is vertical, extending 
throughout a fluid of infinite depth. Potential flow is assumed, with viscous effects 
neglected. 

As in the second-order diffraction regime, the nonlinear loads in the long-wavelength 
regime are due in part to higher-order effects from the linear solution, but are also due 
to nonlinear components of the velocity potential which are forced by the boundary 
condition on the free surface. The corresponding higher-order solution is relatively 
simple compared to the second-order diffraction regime, since the domain where the 
inhomogeneous free-surface condition must be considered is confined to the inner 
region. Furthermore, the left side of this boundary condition includes only the vertical 
gradient of the potential, which is dominant in the inner region. Thus the relevant free- 
surface condition is an inhomogeneous Neumann boundary condition. However, this 
boundary condition cannot be transferred to the undisturbed plane of the free surface, 
in the usual manner of the perturbation expansion in the diffraction regime, and must 
be imposed instead on a horizontal plane which moves up and down with the same 
elevation as the incident wave at the cylinder. 

The resulting wave loads acting locally on cross-sections of the cylinder include 
components proportional to pgA2(Ka)' and pgA3K2a, where p denotes the fluid density 
and g is the gravitational acceleration. Both of these components must be considered 
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if the wave amplitude A and cylinder radius a have similar magnitudes. In addition to 
these distributed loads, point forces act on the cylinder at the free surface, due to the 
variation of the free-surface elevation. It is necessary to consider both of these effects 
- the distributed loads and the point force - as in the second-order diffraction analysis. 

To explain the fact that the loads proportional to different powers of A are of 
comparable magnitude, it is useful to adopt the approach of matched asymptotic 
expansions (cf. Newman 1977, Chap. 7). In the present context we consider an outer 
domain with length scales comparable to the wavelength A, and an inner domain with 
scales comparable to the cylinder radius a. In the outer domain the gradient of the 
velocity potential is governed by the wavenumber K = 211/A, but in the inner domain 
the disturbance caused by the cylinder changes by 0(1) over horizontal distances 
comparable to the radius a. Thus, as in classical slender-body theory, gradients of the 
scattered disturbance due to the cylinder are amplified in the inner domain by the 
factor 1 /(Ka). 

The effect of these disparate length scales and gradients can be estimated in the 
following manner. The normal velocity induced by the incident potential, which is 
proportional to wA, must be offset by an equal and opposite normal derivative of the 
scattered potential. Since the gradient in the inner region is proportional to l /a,  it 
follows that the scattered potential is of order wAa. The corresponding contribution 
to the linear term #t  in the Bernoulli pressure is of order w2Aa, whereas the quadratic 
term i V 2  is of order w2A2; both terms are of the same order if A / a  = O(1). This has 
important consequences not only for the pressure force acting on the body, but also in 
the nonlinear contributions to the free-surface boundary condition. 

Similar assumptions regarding the length scales of the body and incident waves have 
been employed by Rainey (1989), motivated by the work of Lighthill (1979) where the 
assumptions of long wavelengths and body slenderness are combined to derive general 
expressions for the wave loads proportional to A and A2.  (See also Eatock Taylor, 
Rainey & Dai 1992; Jefferys 1993; Jefferys & Rainey 1994.) Rainey has applied this 
methodology in the general case where the incident wave is described by a time-varying 
kinematic velocity field, and the body is free to move in response to the waves. In 
addition to the loads proportional to A and A2, a third-order wave load has been 
derived which acts locally at the free surface (Rainey 1989, equation 7.4). Rainey’s 
approach is quite different from that in the present paper, insofar as the wave loads are 
derived from arguments based on energy conservation, justified on the basis that ‘the 
position of the wave surface is unaffected by the presence of the structure’. When we 
apply Rainey’s results to the special case considered here, we find that they are 
consistent with ours for the forces proportional to A and A2,  respectively. However, the 
force proportional to A3 is different, with the present results substantially larger. A 
more detailed comparison is included in 98. 

An important practical consideration in large waves is the role of separation, which 
may cause significant viscous-drag forces. In the context of Morison’s formula these 
are known to be dominant when the wave amplitude is large compared to the cylinder 
diameter (large Keulegan-Carpenter number). The experimental evidence summarized 
by Faltinsen (1990) indicates that localized vortices may be shed from a cylinder when 
A/a M 1, but that viscous drag is not significant unless the wave amplitude is 
substantially larger than the cylinder radius. Thus it is appropriate to use potential 
theory to describe the regime where the wave amplitude is comparable to the radius. 
Additional support for this conclusion follows from the experiments of Grue et al. 
(1994). 

Our paper is organized as follows. The linear solution is reviewed in 92, starting with 
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the more general diffraction regime and then approximating the solution for Ka < 1.  
With both KA and Ka assumed small, of order E ,  the linear scattered potential is of 
order e2 in the inner domain near the cylinder. The boundary-value problem for the 
nonlinear potential of order e3 is derived in $3, and the solution of this problem is 
developed in 94. The resulting wave loads and the integrated forces due to these loads 
are defined in $5, and evaluated separately in @6 and 7 for the contributions due to the 
linear and higher-order potentials, respectively. The results are discussed in $ 8 from the 
practical standpoint. 

2. Linear analysis 
Cartesian coordinates (x, y ,  z )  are defined with z = 0 the plane of the undisturbed 

free surface, and z < 0 the fluid domain beneath this surface, as shown in figure 2. The 
+x-axis is aligned with the direction of propagation of an incident wave system defined 
by the velocity potential 

$I = Re((gA/w)exp(Kz-iKx+iot)}. (2.1) 

Here A is the wave amplitude, g is the acceleration due to gravity, w is the radian 
frequency and K = 02/g is the wavenumber. Alternatively, in cylindrical coordinates 
( r ,  0) defined such that x + iy = r exp (i6), 

co 
$I = R&[(gA/w) exp (Kz + iwt) C E, i-” cos mOJm(Kr)\, 

\ m=O J 

where e0 = 1, E ,  = 2 for m > 0, and J, is the Bessel function of order m. 
If a fixed circular cylinder with constant radius r = a is present, and the boundary 

condition of zero normal velocity is imposed on this surface, the total diffraction 
potential is given to first order in the form $ D  = $ I  + $s, where the scattered potential 
is 

00 

#s = -Re [(gA/w) exp (Kz+ iot) C E ,  i-” cos mOHg)(Kr) Jh(Ka)/Hg)’(Ka)\. (2.3) 
c m=o J 

Here H:) = J, - i Ym is the Hankel function of the second kind, and primes denote 
derivatives with respect to the argument. This is the linearized solution of MacCamy 
& Fuchs (see Mei 1983, $7.5), which is valid for all values of Ka. 

Hereafter it is assumed that both the wave amplitude and cylinder radius are small 
compared to the wavelength h = 271/K. Thus, in non-dimensional terms, KA = O(E) 
and Ka = O(E), where E < 1 is a small parameter. When dimensional quantities are 
considered it will be convenient to assume that g, w ,  and K are of order one, whereas 
a and A are of order E .  Two complementary domains are considered including the outer 
domain, where Kr = O( l), and the inner domain where r / a  = O( 1). Note that r % a in 
the outer domain, and Kr 4 1 in the inner domain. 

In the outer domain, using the expansions of the Bessel and Hankel functions of 
argument Ka when Ka 4 1 ,  the dominant contributions in (2.3) are from the terms 
m = 0, 1 and of order c3. Thus 

$s M Re {(gA/w) (71i/4) (Ka)’exp (Kz + iwt) [Hr) (Kr )  + 2i cos OH?)(Kr)]}. (2.4) 

In the inner domain similar expansions are applied to the Hankel function of argument 
Kr, and the dominant contribution is from the term m = 1 ,  of order 2 :  

$s M - Re ((igA/w) exp (Kz + iwt) cos 6Ka2/r}. (2.5) 
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FIGURE 2. Definition of the coordinate systems. The cylinder is shown in the 

presence of the incident wave profile z = 5,. 

Adding the corresponding terms up to this order from the incident-wave potential gives 
the two-term inner expansion of the total diffraction potential in the form 

q5D = Re { (gA/w)  exp (Kz + iwt) [ 1 - iKcos O(r + a2/r)]}  + O(E'). (2.6) 

The contribution to (2.6) from the first term in square brackets, which is constant with 
respect to the horizontal coordinates, is of first order in E ;  this term contributes to the 
pressure and wave elevation but not to the horizontal velocity field. The remaining 
terms, which involve the two-dimensional potential for uniform flow past a circle, are 

For later reference we record the following higher-order extension of (2.6), derived 
O(E2). 

from (2.3): 

cPD = Re { (gA/w)  exp (Kz + iwt) [ 1 - iK(r + a2/r )  cos 8 

-+K2r2 +~(Ka)2(log~Kr+y+7ci/2)-+K2cos28(r2+a4/r2)]} + O(e4). (2.7) 

This extension is inconsistent, in the sense that terms of order Aa2 are included but 
nonlinear terms of order A2a and A3 are ignored in the linear solution. These nonlinear 
components are considered in the following section. 

3. The nonlinear boundary-value problem 
The nonlinear potentials of order A2a and A3 are now considered, to complement 

(2.7). Note first that the incident-wave potential (2.1) is exact up to and including terms 
of order A3, provided the dispersion relation w 2 / g  = K is replaced by w2/g = 
K[1 +(KA)'] (cf. Newman 1977, equation 6.39). This higher-order correction of the 
incident wave is not significant in the results to follow. 

Denoting the correction to (2.7) by q5, the total potential in the inner domain is 
written in the form 

q5 = q 5 D + + + 0 ~ E 4 ) .  (3.1) 

$,.=O on r = a ,  (3.2) 

The principal boundary conditions for + are 
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and $tt+g$, = -2V$-V$t-~V$-V(V$)2 on z = 5. (3.3) 

The condition (3.3) is imposed on the free surface, defined here by z = 5. The boundary 
conditions (3.2) and (3.3) are exact, since the linear potential $D is an exact solution of 
(3.2), and it satisfies the homogeneous form of (3.3) for all values of z.  

The contributions on the right-hand side of (3.3) due to the first-order potential dD 
will be evaluated, considering only the leading-order terms of order e2. For this purpose 
the following auxiliary relations are helpful : 

V$r - Vfir = w2A2 e2Kz, 

cos 28 
r2 V$,. V$s = - w2A2a2 ezKz sin2 wt  - + O(e3), 

1 
r4 

V$,. V$s = w2A2a4 e2Kz sin2 or-+ O(e3). 

The contributions to the first term on the right-hand side of (3.3) are 

-2V$.V$, = w3A2e2Kz~in 2wt ,cos28-- +O(e3), (3.4) (Y2 “1 r4 

and the corresponding contributions to the second term are 

1 a4 a6 
sin3 wt  -COS 30- 2 -COS 0 +,COS 8 + O(e3). (3.5) -374-V(V$)2 = -2w3A3e3Kz (;: r5 r 

Note that while the right-hand side of (3.5) is proportional to A3, it is of order e2 when 
r = O(e). 

Both (3.4) and (3.5) tend to zero with increasing radial distance r ,  and in the outer 
domain where Kr = O(1) their contributions to (3.3) are of higher order. Thus the 
forcing effect of (3.4) and (3.5) is confined to the inner domain. For this reason it is 
convenient to formulate the boundary-value problem in terms of the normalized inner 
coordinates 

R = r /a ,  2 = ( - z +  A sinot)/a, 

and solve for the corresponding inner potential 

Y(R, 8,Z)  = $(r, 8, z). 

Here the vertical coordinate is shifted so that the plane Z = 0 coincides with the 
intersection of the incident wave with the cylinder axis, as shown in figure 2, and 2 > 0 
is the domain below this plane. The corresponding inner boundary conditions are 

YR=O on R =  1, 
and 

(a/g) Ytt + 2w(A/g) cos wt  Yzt - KA sin w t  Yz + KA(A/a) cos2 wt  Y,, - Y, 

(3.7) 

= wKaA2sin2wt -wKA3sin3wt 

At this stage the left-hand side of (3.8) must still be evaluated on the exact free surface, 
but on the right-hand side we have set z = 0, since KC = O(e) and the associated 
correction in (3.4) and (3.5) involves terms of order e3. 
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The function Y is governed by the three-dimensional Laplace equation, expressed in 
the cylindrical coordinates (R, 0, Z ) ,  and VY+ 0 when (R2 + Z2)lI2 % 1. This boundary- 
value problem is fully three-dimensional, in terms of the inner coordinates, and the 
three components of the gradient are of the same order in terms of e. Thus 

(3.9) 

It follows that the first four terms on the left-hand side of (3.8), associated with the 
second time derivative, are small compared to the last term by a factor O(e). Thus the 
former terms can be neglected, and with this simplification (3.8) is replaced by the 
boundary condition 

(Y,, R-lY0, Y,) = O( Y). 

Y, = -wKaA2sin2wt 

+wKA3sin3wt -cos30+ --+- cos0 . (3.10) 
[;3 ( ;5 R27) ] 

Since both terms on the right-hand side of (3.10) are O(e3), it follows from (3.9) that 
Y is of the same order in e. 

A distinction should be noted between the gradients of $ D  and y?. In both cases the 
horizontal gradient is of order 1/e in the inner domain, as explained in the 
Introduction. However, the vertical derivatives have different orders of magnitudes. 
For $D the vertical derivative involves the factor K, as is obvious from (2.1)-(2.7). Thus 
there are two length scales, a and 1/K, which affect $s in the inner problem. The inner 
boundary-value problem for $s can be visualized as one where the free-surface 
condition is homogeneous but the forcing on the cylinder extends over a large depth, 
of order l /e  relative to the radius a. 

For y?, on the other hand, the only relevant length scale is a, the radius of the cylinder 
on which the homogeneous boundary condition (3.2) is applied and also the order of 
magnitude of the radial distance on the free surface where the right-hand side of (3.3) 
is significant. This problem can be visualized physically in inner coordinates as one 
where there is a prescribed vertical velocity on the horizontal plane Z = 0 which tends 
to zero for large values of R, with no normal velocity on the cylinder. Expressed in 
terms of the inner coordinates ( R , Z )  there is no relevant length scale, and all three 
components of the gradient are of the same order. 

Next we evaluate the free-surface elevation z = 5, defined implicitly by the equation 

(3.1 1) 5 = - (1 /d [A + w)21*=5. 

This can be expanded in the form 

5 =  51+52+.. . ,  

where 6, = O(e"). In the inner domain the first two terms are derived from $ D  in a 
straightforward manner : 

= A sin wt, (3.12) 

cos0coswt-~KA2cos2wt+KA2 

The contribution from the nonlinear potential y? is of order e3. 
We now consider the possible transfer of the free-surface boundary condition (3.10) 

to an explicit boundary surface. The usual approach in the diffraction regime is to 
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expand the left-hand side in a Taylor series about the plane z = 0. However, the vertical 
derivatives of $ with respect to the coordinate z are amplified by the factor l / a  in the 
inner domain, and since </a  = O( 1 )  the free-surface condition cannot be transferred to 
the plane z = 0. However it is possible to affect this transfer from z = g to the first- 
order approximation of this surface, z = Cl, since 5- c, = O(2) .  Thus the Taylor-series 
expansion of $z about the first-order free surface (3.12) will involve convergent terms 
of increasing order in E ,  and the leading term in this expansion is the value of $z on 
the surface 6 = cl; the next term ((5- c1) $.,,) is smaller than $z by a factor of order E. 

For this reason it is appropriate to satisfy (3.10) on the plane Z = 0, which oscillates 
vertically in space but remains horizontal at all times. 

The right-hand side of (3.10) suggests writing the solution in the form 

3 

Y(r ,  z ,  t )  = C cm(t) Y,(R, Z )  cos me. 
m=o 

(3.14) 

Here the time-dependent factors are 

co = c, = wKA2asin2wt, 

and c, = c3 = wKA3 sin3 wt. 

The functions Y,, which are non-dimensional, are subject to the following boundary 
condition on the plane Z = 0: 

Y,,(R, 0) =f,(R) ( 1  < R < 0 0 1 7  (3 .15)  

where 
f =- 1 f =--+- 4 2  f z = - , ,  2 f 3 = , , .  2 

O R4’ R5 R7’ R 

The boundary-value problem for each function Y, is completed by imposing 
Laplace’s equation in the inner domain, and requiring that Ym tends to zero when 
( R 2 + Z 2 ) 1 / 2 + ~ .  A procedure for solving each of these problems is described in the 
following Section. 

4. Evaluation of the nonlinear potentials 
The functions Ym(R,Z) are defined by the boundary condition (3 .15) ,  and subject 

to the homogeneous condition (3.7) on the cylinder. To facilitate the solution it is 
convenient to express the forcing functions in (3 .15 )  by Weber transforms, in the same 
form used by Emmerhoff & Sclavounos (1992, equation 45). Thus, for R > 1 ,  

where 

and 

The solutions may then be constructed by separation of variables, in the form 

dk Fm(k) eCkZ W,(k, R) 
Jk(k)’ + Y’,(k)2‘ (4.4) 
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k-l dk 
JL(k)2+ YL(k)2' 

Since the functions fm(R) involve inverse powers of R, the integrals 
form 

r m  3 

= 1 ,  

(4.5) 

in (4.2) are of the 

J W,(k, R) R-pdR = kkP-'[(p-v+ l)S-,-,,,-l(k)+(~/~)~-,,,(~)l, (4.6) 

where S,,,(k) denotes the Lommel function defined by Watson (1952, pp. 345-351). 
The argument k is implied below, when not explicitly displayed. 

The solutions for rn = 1 and 2 will be considered, since these are the only 
components required to evaluate the wave loads in $5.  (The other solutions, for 
rn = 0 and 3, can be derived in a similar manner.) Using the boundary conditions 

1 71: 

(3.151, 

F,(k) = (-4R-4+2R-6) W,(k,R)dR 

(4.7) 

s: 
= ( 2 / ~ )  ( - 1 6k3S-5, - 4k2S-,, + 1 2k5S-, , + 2k4S-, , 

8 
71:k 

(-2R-l) W,(k,R)dR =--S-l,2. 

The evaluation of (4.8) is relatively simple, since S-,,,(k) = k-2, and it follows that 

F,(k) = - 8/(nk3). (4.9) 

More elaborate analysis is required to evaluate (4.7), using various relations given by 
Watson (1952, pp. 348-351). Omitting the details, 

1 (kS-,,,+SL1,0) . (4.10) 

Here the prime indicates differentiation of the Lommel function S-l,o with respect to 
the argument k .  

Two complementary expansions may be used to evaluate S1,, and its derivative. 
These include the ascending series 

m l  

(-) (zk)2m ([log $k - $(m + 1)j2 -fv(rn + 1) +in2>, (4.1 1) 
1 "  

S-l.O(k) = - c 2,=, 

where $ is the logarithmic derivative of the gamma function, and the asymptotic 
expansion 

(4.12) 

From (4.12) the corresponding asymptotic expansion of (4.10), for large k, is 

1 12 1 
&(k) wZ[l--  c (-4/k2)m(rn+l)!(rn+2)!(2rn3+17rn2+23m-18) . (4.13) 

The utility of (4.13) can be extended by converting to a continued fraction, following 
the 'QD algorithm' described by Acton (1970). This procedure has been applied to 

36 m=l 
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FIGURE 3. Computed values of the functions Y1 (dashed curve), and Y, (solid curve), plotted as 
functions of the inner coordinate 2 = (5, -z) /a ,  where z = cl is the physical elevation of the incident 
wave at the cylinder axis, and a is the cylinder radius. Note that the influence of these functions is 
concentrated in a region of depth comparable to a. 

evaluate 4 for values of k > 14.5, with truncation after the term m = 7. In the 
complementary domain k < 14.5 (4.10) is evaluated by double-precision summation of 
the series (4.11) and its derivative. With this pair of algorithms a minimum accuracy 
of five significant figures is achieved for the function 4 near the partition k = 14.5, and 
greater accuracy is retained away from the partition. 

As an alternative to the procedures described above, it can be shown that 

k S - , , , + S ~ , , ,  = --ink Y;(k) J,(x)x-'dx-J;(k)r Y,(x)x-ldx]. (4.14) 

This expression can be used to compute (4.10). Methods for evaluating the integrals in 
(4.14) are described in Abramowitz & Stegun (1964, Chap. l l) ,  and by Luke (1969). 

The solutions for Yl(l,Z) and Y2(l,Z) are shown in figure 3. These have been 
evaluated numerically from (4.5), using an adaptive Romberg integration scheme with 
an accuracy of at least six decimals. Both functions decrease monotonically from their 
maximum values at Z = 0. For Z + 1, 

[ r  

!PI( 1, Z )  - FZ-3 (4.15) 

and ~ ~ ( 1 ,  z)  - g - 3 .  (4.16) 

The integrals of these functions over the domain (0 < Z < oo), which are required 
later to derive the integrated force, also are useful to confirm the accuracy of the 
numerical results. For this purpose we apply Green's second identity to the potentials 
Ym(R, 2) cos m6 and to the auxiliary potentials R-" cosrn6 for (rn = 1,2), in the 
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domain of the fluid; after using the boundary conditions (3.7) and (3.15) for the 
integrals which result over the cylinder and free surface, it follows that 

and 

5. Wave loads on the cylinder 

fluid pressure p, is 
The total integrated force acting 

r2n rr 

~ l ( l , Z ) d Z  = $, 

y2( l ,Z )dZ  = i. 

(4.17) 

(4.18) 

on the cylinder in the +x-direction, due to the 

rzn rr 
& = - a  J cos8ds j"  p(a,d,z,t)dz= paj cosHd8J- ($t++Vz+gz),,,dz, (5.1) 

where the Bernoulli equation has been used to evaluate the pressure. In addition to this 
integrated force, it is useful also to consider the differential force or 'wave load' F'(z), 
defined in the form 

0 -m 0 -53 

F' = -a  pcosOd0. (5.2) c 
This gives a more complete indication of the force distribution acting on the cylinder, 
and facilitates the evaluation of the moment and integrated structural excitation. In 
practical applications the local wave load can also be used to estimate the integrated 
force on a cylinder of finite draught, with the ad hoc assumption that the pressure field 
near the free surface is not significantly different in this case from that corresponding 
to a cylinder of infinite draught. 

Special attention is required in the evaluation of (5.1) due to the variation of the 
upper limit z = 5. For this reason it is helpful to decompose the vertical integration, 
with a partition either at z = 0, or at the horizontal plane z = cl = A sinwt which 
coincides with the intersection of the first-order incident wave and the cylinder axis. 
For the contribution from the first-order potential $D, which varies slowly in this local 
region, both partitions are useful. The partition at z = or Z = 0, is most appropriate 
in considering the contribution from the nonlinear potential y9, since this potential 
varies substantially over vertical distances of the same order as A .  

The nonlinear contributions from the first-order potential are considered in $6 ,  using 
the fixed vertical coordinate z and a partition at z = 0. The local force acting near the 
free surface is defined as the contribution to (5.1) from the vertical domain between 
z = 0 and z = 5. The local analysis at the free surface leads to a sequence of higher-order 
forces which act in a concentrated manner as point forces. The total force includes 
contributions both from these point forces at the free surface and from the integral of 
the distributed loads acting below the plane z = 0. For completeness we also show that 
the force associated with the first-order potential can be derived in a consistent but 
unconventional manner, using the inner coordinate Z. 

The nonlinear contributions from the higher-order potential y9 are analysed in $7. 
In this case it is appropriate to utilize the inner coordinate Z, with the partition at 
z = or Z = 0. The resulting wave loads are proportional to A3a. The corresponding 
integrated force is relatively small, since the loads are significant only over a local 
region of depth proportional to a. 
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It is convenient to relate each component of the wave load and integrated force to 
the order of the wave amplitude A ,  irrespective of the additional small parameters a 
and E .  Thus we shall refer to components proportional to A ,  A', and A3 as first-, 
second- and third-order loads or forces. The order of each of these components in 
terms of E must also be considered. In the analysis we include second-order loads 
proportional to A2u2 = O(e4) and third-order loads proportional to A3a which are 
also O(c4). The corresponding integrated forces are proportional to A2a2 = O(e4) and 
A3a2 = O(e5), respectively. Contributions which are of higher order in E will be 
neglected consistently. 

6. Nonlinear loads due to the first-order potential 

decomposed in the form 
In considering the contribution from the first-order potential q5D, (5.1) is first 

F,=pa1;  cos 8 d8 @, (q5t +fV')>,=, dz +pa 1; cos 8 d8 [ ( i t  + i V z  +gz)r3a dz. (6.1) 

In the first integral the hydrostatic pressure is omitted, since it does not contribute to 
the integral over 8. 

From the physical standpoint one might prefer to divide the integral at a lower 
elevation, say z = cL, the lowest point where the free surface intersects the cylinder, to 
avoid contributions to (6.1) from portions of the cylinder surface which are not in 
contact with the water. However these 'dry' portions of the surface give equal and 
opposite contributions to the two integrals in (6.1), with the implicit assumption that 
the pressure can be continued analytically above the free surface, and it is more 
complicated to include CL in the analysis. 

First we consider the wave load F' defined by (5.2). The first-order component is 
derived from (2.6) in the form 

F ;  = pa q5Dt cos Ode = 2xpgKAa' eKz cos wt .  r 
This is the 'Morison inertia force', proportional to the local horizontal acceleration of 
the incident wave and the virtual mass of the cylinder cross-section. In addition, there 
is a second-order component given by 

Fh = ;pa 1; (Vq5,)' cos 8 d8 = fxpgK2a2A2 ezKz sin 2wt. (6.3) 

Next we consider the contribution to the second integral in (6.1) between the planes 
z = 0 and z = 5, = A sin wt. Since is independent of the angular coordinate 8, this 
force can be evaluated directly from (6.2) and (6.3). Integrating each of these 
components between z = 0 and z = C1 gives the results 

2xpgKAa' cos wt  eKz dz = 2xpgKAa2 cos wt(cl +fKG + . . .) 

fnpgK2a2A2 sin 2wt ezKz dz = inpgK2a2A2 sin 2wt(c1 + . . .). 

(6.4) 

(6.5) 

r 
s:' and 
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Adding these two contributions, it follows that 
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J o  J o  

= npgKa2A2 sin 2wt +inpgPa2A3(cos wt -cos 3wt) + O(c6). (6.6) 

Finally we consider the remaining component of the second integral in (5 .  l), from 
the portion of the cylinder between z = cl and the exact free surface at z = 6. Since 

= O(c2), and p = 0 on z = <, we can use the fact that the leading-order vertical 
pressure gradient is hydrostatic to approximate the pressure in the form 

p = - pg(z - 8 + 0(€3). (6.7) 

Thus the integrated force which acts on the cylinder between z = Cl and z = 5 is given 
by 

- a r c o s O d O l p d z  = -$pga r cos8(<-~J2d8 

2n 

= - ipga lo cos 8G d8 + O(e6). 

Here 6, is defined by (3.13), and hence on r = a 

C2 = - 2KAacos 8cos wt -$KA2cos2wt + KA'cos 28 sin2 wt. 

Evaluating the integral in (6.8) gives the result 

1; G cos 8 d8 = 2nK2A3a cos wt cos 2wt, 

and thus 

- a  1; cos 8 d8 l 1 p  dz = - npgK2a2A3 cos wt cos 2wt 

= -$npgK2a2A3(cos w t +  cos 3 4  + O(c6). 
Adding (6.6) to this result, 

= npgKa2A2 sin 2wt - npgK2a2A3 cos 3wt + O(c6). 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

The integrated force which acts on the entire cylinder can be evaluated by integrating 
the loads (6.2) and (6.3) below the plane z = 0, and adding the point force (6.12). This 
gives the result 

FLD) = 2npga2A cos wt +inpgKa2A2 sin 2wt - npgK2a2A3 cos 3wt + O(e6), (6.13) 

where the superscript is used to indicate that this force component is associated only 
with the first-order potential $D. The third-order force in (6.12) and (6.13) has been 
derived independently by B. Molin (private communication). 
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The contributions from the first-order potential can also be analysed in terms of the 
inner variable 2, and this unorthodox approach provides insight into the appropriate 
extension of the first- and second-order loads above the mean free surface. For this 
purpose (6.2) and (6.3) are transformed, using the Taylor series expansion 

eKz = eKCicKaZ = ecKaZ( 1 + KCl + i K 2 c  + . . .). (6.14) 

Thus the three-term expansion of the load (6.2) is derived in the form 

Fi  = 2npgKAa' ecKaZ cos wt 

+ npgK2A2a2e-KaZ sin 2wt + cos wt sin2 wt + O ( 2 )  (6.15) 

and the two-term expansion of (6.3) is 

FL = $rpgK2A2a2 eCzKaz sin 2wt +npgK3A3a2 e-zKaz sin wt sin 2wt + O(2) .  (6.16) 

Adding these two loads, integrating throughout the vertical domain (0 < 2 < a), and 
noting that the appropriate differential height is dz = a d z ,  the force on the cylinder 
below the plane Z = 0 is derived in the form 

pa2 1; cos 8 d8 4- !jv$hD - v$hD),=, dZ 

5 
4 

= 2npgAa' cos wt + -npgKA2a2 sin 2wt + 2npgK2A3a2 cos wt sin2 wt + O(e6). (6.17) 

After including the additional component (6.1 1 )  the result is equivalent to (6.13). 

7. Nonlinear loads due to the potential @ 

contribution to the pressure equal to 
The nonlinear potential $, which is defined by ( 3 . 1 )  and evaluated in $4,  gives a 

(7.1) - P($t + V$hD - V$) = O(c3), 

to leading order in e. The corresponding contribution to the load (5.2) is 

($t + 04,. V$) cos 8 d8 = O(e4). (7.2) 

If the integrated force ( 5 . 1 )  is analysed with a partition at z = or 2 = 0, (7.2) can be 
used below this plane. The additional point force analogous to ( 6 . Q  associated with 
the local region between z = 6, and the exact free surface, is of order e6 and hence can 
be neglected. 

The two terms in (7.2) contribute the corresponding loads 

pa 1; $t cos 8d6 = pa ( Yt + (wA/a)  cos wt Yz) cos 8 d8 r 
pa 1; v$h~.v$ COS 8 d8 = pa ( ( l / a 2 )  $DO $0 + $0, $,) cos 8 do. r 

(7.3) 

(7.4) and 

The contributions from the last terms in these two equations cancel to leading order, 
and the sum of the first terms gives the third-order load 

(7.5) F Q )  = $ T ~ ~ K ~ ~ A ~ ( ~ Y ~ ( ~ , Z ) + ~ Y ~ ( ~ , Z ) )  (coswt-cos 3wt)+O(e5).  
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Thus the third-order load depends on the functions !PI and Y2, which are evaluated as 
described in $4 and plotted in figure 3. The magnitude of Fg(2)  is maximum at 2 = 0, 
and it attenuates monotonically with increasing depth. 

The integrated force due to the pressure (7.1) is derived by integrating the load (7.5) 
in the vertical direction along the submerged portion of the cylinder (0 < 2 <a), 
noting that the appropriate differential is dz = a d z .  Using (4.17) and (4.18) to 
integrate (7.5), it follows that 

Fik) = a 1; F&Z) d Z  = npgK2a2A3(cos wt - cos 3wt) + O(e6). 

This integrated force acts locally near the free surface, in the region 2 = O( 1) or z = 
O(a). In this sense (7.6) is analogous to the point force (6.12) associated with the first- 
order potential, and these two local forces are additive. The total point force c acting 
within the free-surface region z = O(E) is therefore given by the expression 

= npgKa2A2 sin 2wt + 7tpgK2a2A3(cos wt - 2 cos 3wt) + O(e6). (7.7) 

It is particularly interesting to note that the third-harmonic component of the total 
integrated force (7.7) is due to two separate but equal contributions, one from the first- 
order potential # D  as derived in 96, and the other from the higher-order potential @. 

8. Discussion 
An analysis has been performed of the wave loads and integrated forces which act 

upon a fixed vertical cylinder due to the scattering of a regular wave system, when the 
wave amplitude A is comparable to the cylinder radius a. The basic simplifying 
assumption is that the waves are long relative to both A and a. Thus KA = O(e) and 
Ka = O(e), where e 6 1 and Kis the wavenumber. In these circumstances the load per 
unit depth is represented to leading order by the well known ‘Morison inertia force’ 
(6.2), which is proportional to Aa2 = O(e3), with first-harmonic time dependence. This 
load is attenuated exponentially with depth below the free surface, in the same manner 
as the orbital velocity of the first-order incident wave. 

The focus of this work is on the additional nonlinear loads and integrated force 
components which are significant in the above regime. The loads are of order e4, 
including the ‘second-order load’ (5.11) proportional to A2a2 and the ‘ third-order 
load’ (5.12) proportional to A3a. Each of these components is a maximum at the free 
surface. Whereas the second-order load is attenuated exponentially with depth, the 
third-order load is attenuated more rapidly, as indicated in figure 3, with negligible 
contributions below a depth comparable to the cylinder diameter. The third-order load 
is represented in terms of the normalized vertical coordinate 2, which moves up and 
down with the undisturbed incident wave. Thus it is appropriate to think of this load 
as acting locally at the free surface. Both the second and third-order loads are of the 
same order in E ,  despite the fact that they involve different powers of the wave 
amplitude and different harmonic time dependence. 

The integrated forces due to these loads can be derived by vertical integration along 
the cylinder surface. In this context the second-order load is more significant and 
results in a force of the same order e4. The third-order load results in a force of order 
e5, due to its relatively shallow effect. 

In addition to these integrated forces associated with the loads which are distributed 
continuously in the vertical direction, it also is necessary to consider the complementary 
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FIGURE 4. The components of the third-order force and their sum, plotted as functions of time over 
one complete cycle of the fundamental wave period. The component due to the first-order potential 
is represented by the last term in (6.12) and (6.13) and the normalization is such that this component 
is of unit amplitude. The component (7.6) is due to the higher-order potential $. The solid line shows 
the total force including the sum of these two components, and represented by the last term of (7.7). 

point forces which are concentrated in the vicinity of the free surface, caused by the 
spatial and temporal variation of the free-surface intersection with the cylinder. To the 
order considered here this point load is associated solely with the first-order potential. 
The leading-order contribution, which is well known from the second-order analysis of 
wave diffraction, is proportional to A2a2; this point force is four times the integrated 
force due to the second-order load below the free surface, and the net effect is to 
increase the latter force by the factor five. The third-order point force represented by 
the last term in (6.13) is proportional to A3a2 with third-harmonic time dependence. 
This force is precisely equal to the third-harmonic component of the integrated force 
due to the third-order load, and the net effect is to increase the latter by a factor of two. 
Since both components are concentrated near the free surface it is appropriate to 
consider them as additive, in the context of a point force acting at this elevation. The 
complete point force is given by (7.7). 

Since the point of application of the third-order force moves vertically with the free 
surface, the moment about a fixed axis will include a fourth-harmonic oscillatory 
component. This may be significant in the case of a tension-leg platform (TLP) where 
ringing is associated with axial deflections of the mooring tendons caused in part by the 
moment acting on the platform. 

Figure 4 shows the variation of each component of the third-order force over one 
complete period of the first-order motion. The amplitude of the component due to the 
first-order potential is normalized to be equal to one. The peak values of the force (7.6) 
due to the nonlinear potential are about 1.54, and the peak values of the total third- 
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FIGURE 5. The total point force including the second- and third-order components, plotted as a 
function of time for representative values of the wave slope KA. The solid line (KA = 0) is the second- 
order component, and the normalization is such that this component is of unit amplitude. 

order force are about 2.52. In figure 5 the total point force (7.7) is plotted, for a range 
of values of KA,  normalized by the amplitude of the second-order component. In the 
limit K A  = 0 this normalized point force is equal to the second-order component. The 
relative importance of the third-order force increases in proportion to K A .  The second- 
and third-order components tend to reinforce during the first half of the fundamental 
period, and to cancel during the second half. Thus the total point force oscillates 
through one complete and relatively large cycle during the first half of the fundamental 
period, centred at the point wt = 7c/2 when the incident-wave crest is passing the 
cylinder axis. During the subsequent passage of the trough the nonlinear force is 
reduced. The peak values of the total nonlinear force are substantially greater than the 
conventional second-order force. 

Closely related results have been derived by Rainey (1989) and B. Molin (private 
communication). Rainey describes the third-order force in terms of an ‘oblique slam’ 
component 

(8.1) 
which is absent from Molin’s derivation and from the present work. Molin analyses the 
third-order force associated with the first-order potential, in a manner analogous to 
that carried out here in $6, and derives the same result as in the last term of (6.13): 

(8.2) 
Molin has also derived this result by integrating the expression for the load used by 
Rainey (1989) up to the level of the second-order incident wave; this may be a 
fortuitous result since it does not include either the effect of hydrostatic pressure or the 

F, = -&pgK2a2A3 cos 3wt 

F, = - 7cpgK2a2A3 cos 3wt. 
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disturbance of the incident wave by the body. By considering also the effect of the 
higher-order potential $, due to the nonlinear free-surface boundary condition (3. lo), 
we have shown that the total third-order force is substantially larger than that 
associated with either (8.1) or (8.2). In particular, the third-harmonic component of 
our total force (7.7) is equal to twice the force (8.2) associated with the first-order 
potential alone. Thus, neglecting the effect of the nonlinear free-surface condition 
would result in an underprediction of the third-harmonic force by a factor of 50 YO. 

Malenica & Molin (1994) have initiated an ambitious extension of the conventional 
second-order analysis to evaluate the complete third-order force acting on a circular 
cylinder in the diffraction regime Ku = O( 1). In this case it is necessary to solve for both 
the second- and third-order velocity potentials. These are governed by inhomogeneous 
boundary conditions on the free surface which are much more complicated than the 
corresponding free-surface boundary condition (3.10). Another distinction is that in 
the diffraction regime the higher-order potentials are expanded by Taylor series about 
the plane z = 0, on the assumption that each potential is slowly varying in this 
neighbourhood. In the present analysis the third-order potential $ does not satisfy this 
restriction, owing to the disparate length scale associated with the small radius u of the 
cylinder, and it is necessary to satisfy (3.10) on the oscillatory boundary z = 5, which 
moves up and down with the first-order incident wave. Thus the underlying 
perturbation assumptions differ here from those considered by Malenica & Molin 
(1994), and it cannot be assumed that the results of one will be a special case of the 
other. 

By restricting the present work to a single infinitely deep vertical cylinder it is 
possible to solve for the leading-order nonlinear potential $ in a relatively simple 
manner. In addition to knowing the first-order solution, the fact that the body is 
cylindrical permits the nonlinear solution to be carried out in a shifted inner coordinate 
system which moves vertically, without affecting the homogeneous boundary condition 
on the body. This geometry is directly applicable to monotower platforms consisting 
of a single slender cylinder. The consideration of other structures, including tension- 
leg platforms, will require a numerical solution of the inner problem using a time- 
domain method and accounting for the relative motion between the body and free 
surface at each time step. Other possible generalizations include the consideration of 
body motions. 

The analysis carried out here assumes regular waves with harmonic time dependence. 
An important extension would be to consider the interactions between different 
spectral components wi in an irregular seaway. The present approach may be 
generalized for this purpose if the spectral frequencies all satisfy the requirement that 
w: a/g  << 1. The resulting third-order loads and forces can then be expressed in terms 
of the local incident-wave elevation, as well as the fluid velocity and acceleration 
associated with this incident-wave field along the axis of the cylinder. 
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